Research Studies Blame Perception in Autonomous Vehicle Accidents

Contact Our Team

For more information about how Halldale can add value to your marketing and promotional campaigns or to discuss event exhibitor and sponsorship opportunities, contact our team to find out more

 

The Americas -
holly.foster@halldale.com

Rest of World -
jeremy@halldale.com



IROHMS

ST Engineering Antycip has installed a bespoke transport simulator at a special unit within the University of Cardiff’s School of Psychology. This new simulator will allow the unit – which is a collaboration between the university’s schools of Engineering, Computer Science and Psychology – to conduct in-depth analysis and human-centric experimentation in order to investigate how humans perceive and interact with autonomous vehicles, such as self-driving cars.

The work is driven by an EU-funded body called Centre for Artificial Intelligence, Robotics and Human-Machine Systems (IROHMS), and is overseen by Professor Phil Morgan, IROHMS director of research.

“One thing we are interested in is how people attribute blame in an accident between people and autonomously driven cars,” said Morgan. “In order to look at this from a practical perspective, experiments using simulations and where possible (future) prototype AVs are crucial with surveys and the like to gather complementary data on subjective perceptions.”

This means measuring – both cognitively and emotionally – how humans behave with relation to autonomous transport, particularly during situation where blame can be attributed.

FundamentalVR is expanding its Fundamental Surgery platform. Find out more in our exclusive interview with the CEO and co-founder.

“In order to do this, we need to be able to simulate some situations that people can’t yet encounter in the real world and assess technology that isn’t fully developed,” said Morgan. “Moreover, this all has to be done in a safe setting. To our knowledge, there isn’t another driving simulator with such capabilities anywhere in Wales and we will be able to link ours with the few that do exist in the UK in other excellent research centres such as Bristol Robotics Laboratory.”

ST Engineering Antycip provided three of the Canon XEED 500ST projectors with 0.56:1 lenses, which were used to map the surface of the display, delivering 5,000 lumens each at WUXGA resolution. The projectors were rigged from the ceiling using a custom mounting mechanical array. Video signals are passed from the image generators via 15m HDMI cables, while the Ethernet for the projector communications is routed to each projector to allow full remote control.

While these components were relatively stock, the screen was bespoke. ST Engineering Antycip’s commercial development manager, John Mould explained: “We wanted a screen substrate that was inherently more stable than a standard tensioned fabric system, in order to reduce thermal and air-pressure effects within the room-space over time. We proposed a more artisan approach for the screen with a rigid structure offering good stability for the imagery that would be mapped upon its surface.

The digital correction of the content was to be taken care of using ST Engineering Antycip’s VIOSO VR & Simulation software, which offers automatic calibration technology and different options for how the calibration for the corrections is applied. The VIOSO implementation utilises a single specialist PoE camera with a 360x180 degree lens optics to ‘see’ the display surface, which would, in turn, allow for the client to recalibrate more easily in the future.

Although Covid restrictions have ensured that the IROHMS team will have to conduct their research online for the time being, they are looking forward to the chance when they can get the new simulator up and running in order to conduct this important research.

“The development of this technology needs to be informed by knowledge,” said Zhang. “We need to know how humans will respond to these things, and we need to ensure that the design of human-machine interfaces can accommodate humans’ limited cognitive capacity. The sheer functionality of a system is useless if humans can’t use it. First, we need to test what type of interface works better, then we need to use that to inform the development of new technology. The best way for us to do this is through simulation, and we are so pleased that we will soon be able to do that.”

Related articles



More Features

More features